

Blood 142 (2023) 2564-2565

The 65th ASH Annual Meeting Abstracts

POSTER ABSTRACTS

301.VASCULATURE, ENDOTHELIUM, THROMBOSIS AND PLATELETS: BASIC AND TRANSLATIONAL

Non-Activating Integrin β 3(R734C) Mutation Associated with Macrothrombocytopenia and Impaired Platelet Function

Keiichi Nakata, MD^{1,2}, Keigo Akuta, MD PhD^{3,1}, Takaya Endo, MD¹, Midori Koike, MD^{1,2}, Hisashi Kato, MD PhD¹, Yoshiaki Tomiyama, MD PhD¹, Naoki Hosen, MDPhD¹, Hirokazu Kashiwagi, MD²

¹Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan

²Department of Blood Transfusion, Osaka University Hospital, Suita, Japan

³Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan

Introduction

We and others identified several mutations in *ITGA2B* or *ITGB3* associated with congenital macrothrombocytopenia. These mutations are located around transmembrane domains of α IIb or β 3, and basically induce constitutive activation of α IIb β 3. Recently, we identified a mutation, β 3(R734C), which is located in cytoplasmic tail of β 3 without inducing α IIb β 3 activation in a Japanese family with macrothrombocytopenia. We analyzed the effect of the mutation on platelet production and function using knock-in (KI) mice.

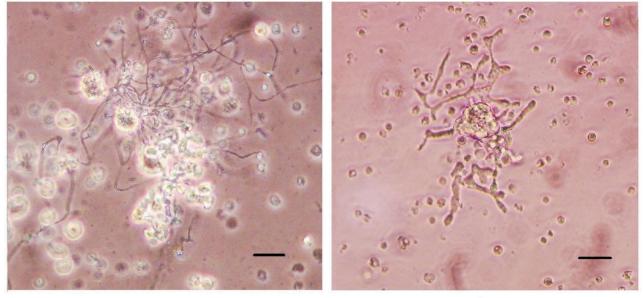
Cases and Transfection assay

The proband was a 14-year-old Japanese girl, who showed macrothrombocytopenia with 60-90 x 10 ⁹/L platelet counts and mild bleeding tendency. Her mother, her maternal aunt and a cousin also showed macrothrombocytopenia. The expression of α Ilb β 3 on their platelets was decreased to ~50% of healthy control. GPVI expression was decreased, whereas GPIb expression was increased probably due to the increase in platelet size. Genetic analysis revealed that all affected subjects were heterozygous of β 3(R734C) mutation. No PAC-1 binding was observed to the platelets of the affected subjects or α Ilb β 3(R734C)-transfected 293T cells, indicating that the mutation does not cause α Ilb β 3 activation.

Methods and Results of mouse studies

We generated β 3(R734C) KI mouse (C57BL6/J background) by CRISPR/Cas9-mediated genome editing. The β 3(R734C) KI mice were viable with no apparent bleeding tendency. Platelet counts of heterozygous (Hetero), and homozygous (Homo) KI mice were decreased relative to those of wild-type (WT) mice [WT: 1095 ± 52 (x10 ⁹/L), Hetero: 834 ± 93**, Homo: 445 ± 30** (mean±SD, **P<0.01 compared with WT, n=6 respectively)], with an increase in platelet size, indicating that β 3(R734C) leads to macrothrombocytopenia. Moreover, the expression of α IIb β 3 and GPVI in platelets was decrease in KI mice like human subjects. Platelet aggregations were impaired in KI mice. JON/A binding was not detected on non-stimulated platelets and agonist-induced P-selectin and JON/A binding were impaired in homo KI mice, particularly in PAR4-AP stimulation. Platelet spreading on fibrinogen (Fgn) was impaired in KI mice 5 days incubation with murine thrombopoietin. Interestingly, the expression of α IIb β 3 in Mgk of KI mice [WT: 78(%), Homo: 32(%) (P<0.01)]. RhoA activation was assessed by ELISA and it was significantly decreased in Fgn-adhered Mgk of KI mice [WT: 0.33±0.039, Homo: 0.16±0.029 (mean OD 490nm Δ blank±SD, P<0.01)]. Finally, we observed impaired proplatelet formation of fetal liver derived-Mgk in KI mice [WT: 26.2±2.7(%), Homo: 15.2±1.9(%) (P<0.01)] with abnormal morphology (Figure 1). These results suggest that impaired α IIb β 3 outside-in signaling and cytoskeletal remodeling in KI mice lead to macrothrombocytopenia.

Conclusions


We revealed that a non-activating β 3(R734C) is a causal mutation of macrothrombocytopenia in human and mouse. This mutation leads to impaired inside-out and outside-in signaling of α IIb β 3, which results in abnormal platelet production with impaired cytoskeletal reorganization. Our results also suggest that abnormal signaling induced by β 3(R734C) causes reduced expression of GPVI, which has not been reported in other α IIb β 3-related macrothrombocytopenia.

Disclosures Tomiyama: Sysmex: Consultancy; Kissei Phamaceutical: Honoraria; Novartis: Honoraria; Kyowa Kirin: Honoraria. **Hosen:** MOCHIDA PHARMACEUTICAL CO.,LTD.: Research Funding; Nippon Shinyaku Co., Ltd.: Research Funding; ONO

POSTER ABSTRACTS

PHARMACEUTICAL CO., LTD.: Research Funding; Eisai Co., Ltd.: Research Funding; Kyowa Hakko Kirin Co., Ltd.: Research Funding; TEIJIN LIMITED: Research Funding; CHUGAI PHARMACEUTICAL CO., LTD.: Research Funding; Otsuka Pharmaceutical: Research Funding; Shionogi Pharma Co., Ltd.: Research Funding; ASAHI KASEI PHARMA CORPORATION: Research Funding. **Kashiwagi:** Sysmex: Honoraria, Research Funding; Novartis: Honoraria; Kissei Phamaceutical: Honoraria; Argenix Japan: Honoraria.

Figure 1

WT

Homo

Figure 1.

Representative microscopic images of murine proplatelet formation of fetal liver derived-megakaryocytes (left: wild type (WT), right: homozygous (Homo) knock-in mice). Scale bars represent 50µm.

Figure 1

https://doi.org/10.1182/blood-2023-178475